
AU-AI27 051 DISTRIUTION OF FUNCTION ALITY AMD LEVELS OF PFUMCTIOM*LITY AS A SOLUTION T (II NORTH CAROLINAAOUICULTURAL AN0 TECNNICAL STATE I wV GAEEMSBO.UNCLASSIFIED N L MARTIN ET AL. APR 03 ARO- OSgl I-EL-H FIO 9/2 NLII,,,'i"'I1111.111l I

MEN MEDIllllllllllll



r

11111 112.0
I1.

11111 ~ ~li

11111- 25-

MICROCOPY RESOLUTION TEST CHART
WAIONAL SuEAU oF StAnDARDS-1963 -A



Unclassified
SECURITY CLASSIFICATION Of THIS PAGE (Ulef -at- .l'E

REPORT DOCUMENTATION PAGEBEOECMLTNrF
1REPORT NUMBER 2.0GOVT ACCESSION No. 3. RECIPIENT'S CATALOG NUMBER

TITLE (and Sabltle) FEOTIIPRO OEE

Distribution of Functionality and Levels of 15 Aug 81 - 15 Feb 83
Functionality as a Solution to the CONOPS 6. PERFORMING ORG. REPORT NUMBER
Problem

AAUTNORre) S. CONTRACT ON GRANT NUMSER(eJ

Harold L. Martin DAAG29 81 G 0009
*Pakize S. Pulat

NAMEANO DDRESto. PROGAM1 ELEET. PROIECT. TASK
PERFORMING ORGANIZATION AREA ^N DRSSP0A WORIC NIT NUMBER

North Carolina Agricultural & Technical State U
Greensboro, NC 27411

*CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U. S. Army Research Office Ar8
Post Office Box 12211 .NUBROPAE
Research Triangle Park NC 27073______________
*MONITORING AGENCY HNM 0 AOORssf~ ji ij mgm cm Amou Office) 1S. SECURITYCLS.(1tl d)

D ISTRIBUTION STATEMENT (of te Report)

Approved for public release; distribution unlimite d.

17. DISTRIBUTION STATEMENT (of the oetract mtered in 880611 20. II dierm0t be, R141"t) 11 A

IS. SUPPLEMENTARY NOTES

>- The view, opinions, and/or findings contained in this report are those of the
cl. author(s) and should not be construed as an official Department of the Army
C: position, ,)olicy, or decision, unless so designated by other documentation

19. KEY WORDS (Conttuu. on v.. .Ida If nec..c, md identity by btock nombe)

LUJ

SAwriRACT (CNMI ME -- --- WOOe. - # Aptf S lock Mmber)

This document is the final report -f r a research project sponsored by the
United States 41 t stzldy--hi~stribution of functionality within a
distributed Systd so as to provide the system with graceful degradation. In
addition, overall system capabilities were studied in an effort to describe
system performance as system resources were alleviated due to failure.

inDIJ~nW 3 UNCLASSIFIED

83 05 SEcumlv CLASFICT;3; or TIS PAit (0. 0oe .. o



NPeriod: August 14, 1981 to February 15, 1983

D-. Hrold L Mrrtin

Department of Electrical Engineering

83 05 03 023



I'
Distribution 

Of Functionality 
And Levels Of Functionality

DtbiAs A Solution To The CONOPS Problem

I Research Agreement No. DAAG29-81-G-0009

Period: August 14, 1981 to February 15, 1983
I

I Dr. Harold L. Martin

I Department of Electrical Engineering

I And

I Dr. Pakize S. Pulat

Department of Industrial Engineering

North Carolina Agricultural And Technical State University

Greensboro, North Carolina 27411

o -w l 'D ". 
.

.Ii .'o

.L 

JIll

L I



CONTENTS

PAGE

1.0 Introduction 3

2.0 Research Description 4

2.1 The Problem 5
2.2 Brief Review of Literature 8

3.0 The Assignment of Modules to Processors 10

3.1 Development of Model 10
3. 1.1 Assignment Model 14

3.2 Extensions to Model 18

3.3 Assignment of Additional Modules 19

3.4 Scheduling Modules to Processors Using
Network Flow Approach 22
3.4.1 Flow-Chart for the Algorithm 24
3.4.2 Example 1 25
3.4.3 Example 2 29

4.0 Scheduling Algorithm 38

4.1 Multiprocessor Scheduling Algorithm 38

5.0 Summary 42

6.0 References 4

7.0 Appendices 46

Appendix I - Solution of the Assignment Problem 47
Appendix II -Assignment of Extra Modules to

Processors 52
Appendix III -Network Flow Approach to two

Processor Scheduling Example
Problem 55

Appendix IV -Network Flow Approach to Three
Processor Problem 59

Appendix IV-A 'JAN'; Processor Sl is Active
and the dummy processor S4 is
connected to processor S2 & S3.

Appendix IV-B 'JANA'; Processor S2 is active
and the dummy processor S4 is
connected to processor Si & S3.

Appendix IV-C 'JANAK'; Processor S3 is active
and the dummy processor S4 is
connected to processor S1 & S2-



I
I

LIST OF FIGURES

PAGE

Figure 2.1 The proposed model of the distributed
system. 7

Figure 3.1 The distributed processing system
illustrating the assigning mechanism. 11

Figure 3.2 The example of the ideal balanced
assignment strategy. 13

Figure 3.3 An example to the network representation
of the problem. 23

Figure 3.4 Example of a multicut. 23

Figure 3.5 Intermodule communication graph. 26

Figure 3.6 Intermodule and module-to-processor 27

communication graph.

Figure 3.7 The solution to the two processor problem. 28

Figure 3.8 The module interconnection network. 30

Figure 3.9 Illustration of processor Si active and
the dummy processor S4 connected to S2
and S3 . 33

Figure 3.10 Illustration of processor S2 active and the

dummy processor S4 connected to Sl and S3 . 34

Figure 3.11 Illustration of processor S3 active and the
dummy processor S4 connected to S1 and S2 .  35

Figure 3.12 Optimal module to processor schedule. 37

I

I



ABSTRACT

This document is the final report for a research project sponsored by

the United States Army to study the distribution of functionality within a

distributed system so as to provide the system with graceful degradation.

In addition, overall system capabilities were studied in an effort to

describe system performance as system resources were alleviated due to

failure.



3

1.0 INTRODUCTION.

The currently existing systems employed by the military, which consist

of a function or functions residing on a single processing unit, fail in

the worst possible way in the field. That is, when the processing unit is

destroyed, the function ceases to exist. This, coupled with the

impossiblilty of reverting to a manual method - since much of the doctrine

for the function becomes embedded in the automated system - leads to an

intolerable situation in the field. In essence, the operational capability

of a unit can be destroyed by destroying its computer.

A method of supplying systems which differ in a fundamental way from

the current "point system" approach was studied. This method is based upon

a combination of distribution of the functionality of a system across a

network of processing units and provisions of each function (and the

subfunctions of which it is made of) in a number of locations in the

network with a number of levels of functionality. In operation, the

request for a function causes the best instance of that function currently

available to the requesting processor to be invoked. Graceful degradation

may be provided by making this best function dynamic in the sense that,

depending upon the currently existing system configuration, the function

can be rescheduled if it was lost during the previous scheduling attempt or

if the scheduled hardware is currently unavailable. Clearly, such an

approach would ensure the availability of computer capability over a more

extended period of time than the single stand-alone computers presently

being employed. Further, there are other advantages to utilizing such a

distributed system. First, a more powerful capability can be made



4

available by interconnecting several computer systems together in a

distributed fashion. Secondly, the computer systems used need not be all

that expensive since the distributed system will require that functions be

segmented in such a way that they can run on a less powerful and less

expensive machine. Thirdly, since the system modules will be assumed to be

identical for this research (but in reality may or may not be), it is much

easier and more economical to replace any faulty or destroyed modules.

2.0 RESEARCH DESCRIPTION

In recent years distributed processing systems have been a subject of

interest due to the availability of computer networks and the availability

of microprocessors for use in inexpensive distributed computers.

Therefore, this study attempts to develop a scheduling algorithm for a

distributed system, to improve the total system performance and to

effectively utilize all system resources. The objective of the scheduling

algorithms is to minimize the processing time of the system, balance the

load among the available processors and to increase the efficiency of the

total system. This study also attempts to develop a rescheduling algorithm

which provides a means of regaining a function when it has been lost due to

loss of a particular constraint attached to the distributed systems. The

introduction of the microprocessor has made distributed processing an

increasingly popular notion in the computer industry. Economics of

fabrication have substantially reduced the cost of replacing processors in

a system, making distributed processor systems economically attractive.

Microprocessors have created an environment that is fostering the growth of

distributed computation.



A

5

By a distributed computer system in which there exist several

progammable processors, and inwhich typical computations visit two or more

processors during an execution. The distributed programs that we consider

in our analyses are assumed to be made up of modules that are, in general

faceed to reside on any processor if it is not an attached module, in the

distributed system.

Distributed computer systems appear to offer extensibility

improvements over these configurations due to decentralization of the

interconnection and control logic (both hardware and software). As the

system is scaled up in size, nonlinearities and boundary conditions in

performance are less likely than for centralized systems.

2.1 The Problem

The existing systems employed by the military, consist of a function

or functions residing on a single processing unit with the result that when

the processing unit is destroyed, the function ceases to exist. This

coupled with the impossibility of reverting to a manual method-since much

of the doctrice for the function becomes embedded in the automated

system-leads to an intolerable situation in the field.

A method of supplying systems which differ in a fundamental way from

the current "point systems" approach is proposed for investigation.

This method is based upon a combination of distribution of the

functionality of a system across a network of processing units and

provisions of each function (and the sub-functions of which it is made of)



6

in a number of locations in the network with a number of levels of

functionality. In operation, the request for a function causes, the best

instance of that function currently available to the requesting processor

to be invoked. Depending upon the currently existing system configuration,

the function can be rescheduled if it was lost during the previous

scheduling attempt or if the schedule hardware is currently unavailable.

Clearly, such an approach would ensure the availability of computer

capability over a more extended period of time than the single stand-alone

computers presently being employed.

The proposed model of the distributed system to be considered in this

research is shown in Fig. 2.1. Although the system is depicted with only

five modules and 3 processors there may be many more, or even less modules.

Each module is defined to have a set of resources, such as CPU speed,

memory size, computational power, etc. These resources may or may not be

the same for each module. The solid arrows indicates the communications

link over which programs and data are transferred between the various

modules. The dashed arrows indicate that a communications link could

possibly exist between the modules as shown.

As stated earlier, the number of modules and the exact interconnection

of these modules may vary depending upon the configuration that supports

the most efficient scheduling algorithm. Therefore, in the project we

investigated and developed a heuristic that will schedule functions to

modules subject to constraints that are well defined.



cnI

LW u

r- 0

cJz
cJ -a.

* '4



2.2 Brief.Review of Literature

Since the mid-l960's several investigations have been done in the area

of distributed computer systems. Distributed systems has received

increased attention in the recent literature. Some of this work will be

discussed briefly next.

Harold S. Stone [5] has shown how the program, modules of a program

may be assigned to the processors in a distributed computer system so as to

minimize the overall cost, including two types of cost: the cost of

running an individual's module on a processor and the cost of

interprocessor communication that arises in the event of transfer of

control of execution from one processor to another.

V. B. Gylys and J. A. Edwards [41 introduced a performance measure

for a real time-distributed network and discussed computational techniques

for obtaining optimal work load partitioning over a network configuration.

Optimality is attained by the assignment of programs of computers which

minimizes the intercomputer bus traffic, subject to constraints on the

maximum loading of each computer. This principle could be used to

determine workload partitioning both at design and in real-time;

furthermore, at design time, it can also be applied to finding optimal

network configuration for a given software design. Gylys and Edwards,

proceeded with formulation of an optimally criterion for workload

distribution and derived a mathematical optimization problem; subsequently

it examined the computational techniques for solving that particular

problem; it ended with a critical assessment of the proposed method.



I
The problem was to find an assignment of program modules to the

processors in the network. We researched to make such an assignment

efficient by using the method of Ford and Fulkerson [8] that has been

developed for maximizing flows in commodity networks. The maximum flow

algorithm was extended to solve the multi-processor models. This is to say

that the value of a maximum flow in a commodity network is equal to the

weight of a minimum weighted cutset of the network. A cutset of the

commodity network is a set of edges which when removed disconnects the

source nodes from the sink nodes. This is explained in detail in Chapter

II.

W. W. Chu, L. Y. Holloway, M. J. Lan, and K. Efe, [10]

concentrated on the problem of task allocation in distributed data

processing. A distributed processing system has conflicttng requirements

and this paper therefore, made a compromise to find the optimum assignment

policy for a task. Different approaches for solving the assignment

problems have been surveyed. All of the possible methods for partitioning

a task have not yet been fully investigated, although some promising

attempts have been reported.

V. Balanchandra, J. W. McGredie, and 0. 1. Mikhai [1]

investigated the job assignment problems in a network of non-identical but

functionally similiar computers. Periodic review models are formulated

utilizing (0-I) integer programming, network flow algorithms,

transportation problems and heuristic balancing procedure. They

investigated the power of each; to determine what type of Information

about job requirements is needed; to compare the processing requirements

and the quality of the solution for each formulation.

I



10

Edward K. Bowdon, Sr. [3] has done research, aimed at developing

analytical tools for system modeling and analysis of real-time computer

networks. He formulated an idealized mathematical model for multiserver

systems with a finite length nonpreemptive priority queue. Given that jobs

consist of dependent tasks having linear loss functions, Bowdon formulated

an algorithm for assigning priorities to tasks. Hie defines a feasible

successor set of tasks as a subset of tasks which can be scheduled

independently. Each task is weighted by the maximum cost rate per task

over every feasible successor set of the task and the task set is divided

into levels based on the precedence reLationship among the tasks.

Generally, the al3,orithm gives priority to tasks within a given level.

This algorithm is in general, suboptimal.

Kennal Efe [7] extended the work done by Chu, Holloway, Lan and

himself to find a heuristic for task allocation in a distributed system.

The purpose of his study for task allocation scheduling in a set of

interconnected processors was to reduce job turnaround time. This was done

by minimizing any communication between processors. A distributed

processing system has conflicting requirements; therefore some compromises

were made in order to find the optimal assignment policy for a task.

3.0 THE ASSIGNMENT OF MODULES TO PROCESSORS

3.1 Development of Model

Distributed processing enhances system(s) performance by employing

several processors to handle the processing load. A representation of the

distributed processing system is shown in Fig. 3.1. The key elements in



I• I

I
II

D

E A

B

C

ASSIGNING

MECHANISM i

COMMUNICATION FRONT END

Figure 3.1 The distributed processing system illustrating the
assigning mechanism.



12

this system are a set of modules to be processed {i 2 .. i}and a

module allocation or a module assignment mechanism, C, which assigns each

of the i modules to one of the n processors, {S,, S 2 ... Sj. In general,

the number of modules is much higher than the number of processors. There

can be a mechanism where the processors in this environment communicate

among themselves via interconnection mechanism shown in Fig. 3.1. Modules

may be assigned to different processors for the fastest processing time.

The intermodule communication between any pair of modules is

determined by software design and fixed attribute of the modules at the

time of module assignment. We have to assign modules to processors so that

all processors are approximately evenly loaded. The example of the ideal

balanced assignment strategy is exhibited in Fig. 3.2 where six modules

have to be processed by three processors, i.e., these are the modules (i1 ,

i2 ,".61 which are to be assigned among the three processors {S1 , S2 S1

We assume each module has identical processing requirements and processing

time, and that each processor has identical processing abilities. For

simplicity, let us also assume that the processing time of each processor

is one minute per module, i.e., for the case illustrated in Fig. 3.2, the

system is able to process the module assignment in two minutes.

Figure 3.2 exhibits the following:

S1 will process i1 and '

S2 will process '2 and t

S3 will process 13 and 16

Thus the required total time equals two minutes.



13

0114

14 5' 
6

12
3

COMMUNTCATIONs FRONT END

IFigure 3.2 The example of the ideal balanced assignment strategy.



14

The objective is to distribute modules in a manner such that maximum

number of modules can be processed simultaneously for the maximum system

performance.

The method used is a graphical method where modules to be assigned are

like a set of nodes in a network. We assume the inter-module communication

time between the modules are known, represented by the time unit or by the

weight of undirected arcs connecting the nodes. An inter-module or module

to processor communication of zero means that no communication takes place

between the two modules or between the module to processor. They are

connected in the network to show that there could be communication. An

inter-module or module to processor communication time of infinity means

these modules should not be processed by that particular processor. We

also assume that all processors are ready and available at all times for an

assignment.

Therefore, the assignment strategy in this model is to minimize total

processing time defined as the sum of the processing time with respect to

the module connection to the processor. In order to represent the

inter-module communication and/or module to processor assigqnment, we

propose the following assignment model.

3.1.1 Assignment Model

Given the network configuration the objective is to assign modules to

processors with the objective of minimizing total time where total time is

the running time of' modules int the processors plus the Intercommunication

time among the modules. The problem can be formulated as a linear



15

programming problem as following:

Define Xij = 1 if module i is assigned to processor j, 0 otherwise.

Let tjj f running time of module i in processor j

tik i Z intercommunication time for modules ik and it

I = set of modules, {f, 2, ... ,m}.

J = set of processors, {1, 2, ...,n}.

The model can be stated as:

Minimize E E tij Xij + Z tikiz W'ikQj
iCl JEJ jEJ ikiZEl

(1) + t Yii

jcJ ikiEI ii kiZi

subject to
m

(2) Z Xij >1 for all jcJ

(3) Z Xij =1 for all iEl

j=1

(4) Xikj - X1  + Wik±2, - Yiki. = 0 for all (ik , i ) and j

Xij > 0 for all icI and JEJ

The above module assigns at least one module to each processor with

the objective of minimizing total running time. If there exists no

constraint as to the utilization of processors (i.e., not all the



16

processors need to be used), then one can simply remove the first

constraint set from the above model before solving the problem.

To clarify the procedure, the following simple, five modul.s, three

processors problem is modeled as an assignment problem and solved using the

available LINDO (Ref. 9) package program. (See Appendix I).

Tables I and II give the intermodule communication times and module to

processor communication times, respectively.

The optimal assignment as read from the computer output is as follows:

Module Processor

A 1

B 2

C 3

D 3

E 3

Total running time = 33 time units.

i



17I
I

TABLE I. INTER MODULE COMMUNICATION TIME

MODULE A B C D E

A 2 3 3 -

B 2 2 1

C 2 7

D

E

TABLE II. MODULE TO PROCESSOR COMMUNICATION TIME

MODULE S 1 S 2 S 3

A 3 12 15

B 10 4 12

C 12 14 4

D 10 7 5

E 4 7 3



18

3.2 Extensions to Model

The above model assigns modules to processors with the objective of

minimizing total running time. It assumes that:

(a) Each processor must have at least one module assigned to it.

(b) Each processor has enough capacity to handle all the modules

assigned to it.

(c) There exists only one of each type of module in the system.

(d) Workload of the processor is not an issue.

The above assumptions can be relaxed as the assignment inodel can be

modified to incorporate the changes. To ;relax the first assumption, one

simply removes (2) which is the first constraint set from the model. To

relax the second assumption, one needs to introduce a new constraint set

indicating that the memory space needed by the modules assigned to a

specific processor must not exceed the total available memory space in the

processor. Let mi denote the memory space required by module i and M

denote the total amount of available space in the Jth processor. Then,

L. mi Xii .< Mj for all jeJ.

It should be noted that the inclusion of this constraint set to the

existing model destroys the topology of the model. One can not now

guarantee integer solutions. Therefore, one needs to use some other

solution methods, like integer programming methods, to restrict Xi

variables to have values of 0 or 1, which decrease the efficiency of the

model considerably. A similiar problem, called the job scheduling problem,

with no communication between the jobs has been efficiently solved as the

_____ _____ __-A



I
19

knopsach problem and presented at the ORSA/TIMS San Diego Conference

f (October 1982). The existence of intermodule communication in our model

prevents us to use the above mentioned algorithm.

The third assumption is the subject of the proceeding section. The

last assumption can be relaxed by adding another set of constraints into

the model which turn decreases the efficiency of the proposed solution. A

more realistic approach would be to get the assignments neglecting the

workloads and then reschedule modules to processors in a way to balance the

workload with the objective of minimizing the increase in the total

processing time.

3.3 Assignment of Additional Modules

The utilization rate of modules plays an important role in the

scheduling process. Scheduling highly used modules to one processor

increase the queue length for that procesor and in turn decreases the

realiability of the whole system. Duplicates of the module must be

assigned to other processors to resolve this issue. How many of each

module and to which processors to be assigned are the concern of this

section.

Let P1  denote the utilization rate of module i, which is a

predetermined number. The expected number of module i, E(i), can be

calculated by multiplying the utilization rate of module i by the available

number of processors. That is,

E(i) - Pi x n

The procedure that we propose is the following: neglecting the extra



20

modules. Solve the assignment problem as explained in section 2.1 and get

the initial assignments. Then, calculate E(i) for each model. The

assignment of extra modules to the processors will be obtained by solving

the following linear programming model.

Minimize Z tij Xj
iCI JeJ

Subject to X ij = E(i) - 1 for all i

Xij = 0 if module i is assigned to processor
j in the previous assignment problem

Xii < 1 for all i and j.

where ti, is the processing time of rodule i in processor.

The above program assigns tne extra modules to processors with the

objective of minimizing total processing time.

Table III gives the utilization probability for each module and the

expected number of modules required from each sodule for the problem given

in Table IV and Ei is taken to be the smallest integer greater than or

equal ti the product Pi x n.



I
21

TABLE III

MODULE P Ei

A .2 1

B .5 2

C .8 3

D .4 2

E .7 3

The assignment model and the solution for the above problem is given in

Appendix II. Table IV summarizes the solution.

TABLE IV

PROCESSOR (S) TIME
MODULE # OF MODULES ASSIGNED REQUIRED

A 1S 1  3

B 2 S1, S2  14

C 3 S1 , S2 , S3  30

D 2 S2 9 S3  12

E 3 S1 , S2 , S3  14

j



22

3.4 Scheduling [Modules To Processors Using Network Flow

Approach

There exists a close relationship between assignment and network flow

models. Simply, one is the dual of the other. Therefore, the scheduling

problem can be attacked as a network flow problem in the following way.

Let the processors and modules be the nodes of the network. A set of

arcs connect modules to modules and modules to processors. If arc (i,j)

connect module i to module j then tij indicate the intercommunication time

between modules i and j. On the other hand, if arc (i,j) connects module i

to processor j then tij is calculated as

tkj tik- tij
kcj n-ikE:J

that is, ti, is the sum of processing times of module i in the processors

other than j less the processing time of module i in processor j divided by

number of processors minus one. Figure 3.3 is an example to such network

configurations. The problem of assigning modules to processors with the

objective of minimizing total time can now be translated to the problem of

finding a multicut with minimum value. The set of modules in the subset of

a processor will be assigned to that processor.

The procedure for n processor m module problem can be summarized as

follows:



II
I23

t~~ -t- S

25 125 2 2521

t 1,21 35 2 t225 2
22

3 t 23 Is3S 251+2 2- 5 3 t Is3t s3  2 s

Figure 3.3 An example to the network representation
of the problem.

Definition: A multicut partitions the graph into n disjoint sets where

each set contains one and only one processor. No proper

subset of this cut is also a multicut.

Figure 3.4 is an example of a multicut for the given networ..

S2  processor

1 2 module

SS

Figure 3.4 Example of a multicut.



24

1. Construct the general network.

2. For each processor Si, find the maximum flow from processor

Si to all other processors. Store the minimal cut. At this

step n maximum flow problems will be solved and n minimum

cuts will be located.

3. Form n-i multicuts.

4. The multicut with the minimal value generates the desired

assignment.

3.4.1 Flowchart For The Algorithm

I. INITIALIZATION

Given the network configuration, read and store the data.

Set MIN = 0, KK = 0

II. MAXPLOW

For each processor Si: Maximize the flow from Si to all other

processors (LINDO software package is used at this step). Retain the

minimal cut, Ci.

III. MULTICUT

Using the n minimal cuts, (C's) generate (n-i) multicut. TTi

denotes the value of the minimal cut Cii.e., the time of

running modules in the assigned processor (s). TTMC; denotes

the value of the jth multicut.

IV. MINIMUM MULTICUT

Among the n generated multicuts locate the cut with minimum capacity.



25

3.4.2 Example 1. Two-Processor Problem

fConsider the network of Fig. 3.5. The inter-module

communication times for this network are shown in Table V. The

module-to-processor communication times are shown in Table VI.

The objective is to minimize the total absolute running time of a

program in the network. The network in Fig. 3.6 can then be

constructed with nodes for each of the modules and inter-module

communication times on the arc joining the nodes. In order to

represent the processing time, two additional nodes are added to the

network to represent the two available processors S, and Sq. The

running time of each nodule on processor S, is denoted by the arc

joining that module node to the node S1. Similiarly, running time of

each module on processor S~, is denoted on the arc joining that module

node to theS2

If a max-flow-mmn-cut algorithm (8] is performed on the network

of Fig. 3.6, the cut shown by the heavy dark line on Fig. 3.7 is

obtained. As shown in Fig. 3.7, modules A, B, C, D, and E are

assigned to processor S1 while module F is assigned to processor S2

(See Appendix III for computations).

While this method is attractive in its simplicity, it has several

limitations. The basic min-cut solution provides for a minimum time

assignment between two processors. In general, an execution of this

method to an arbitrary number of processors requires an N- dimensional

mini cut algorithm, which quickly becomes computationally intractable.

This limits the usefulness of the method in many applications. An



26

4

E

Figure 3.5 Inter-module communication graph.



II

27

I

E

Figure 3.6 Intermodule and module-to-processor
communication graph.



28

A

1'Lure3.7 Thesoltio t th tw prcesor robem



29

extension of this method to allow assignments among three processors

or more is now proposed.

3.4.2 Example 2. Three-Processor Problem

The interconnection graph for a three-processor and five module

assignment is shown in Fig. 3.8. This network is used with

undirected arcs to find the relationship between processors and

modules. Our research has shown that the maximum flow algorithm finds

an optimal position for a three-processor system.

Table VII shows the time each module will take with a given

processor. Therefore, when the program execution begins, the floating

modules will be assigned to the processor which will process where the

computation time is minimum. As an example, the best guess for module

A will be processor S1 and for module B will be processor S2 , etc.

The weight of a branch is the total time charged to intecrmodule

references represented by the branch.

Therefore, if k references between two modules occur during the

running of a program and each reference takes t seconds, then when the

modules are assigned to a particular processor, the weight of the

branch representing these references is kt.



30

cnj

0

000

-4

C40

C40



31

M L L r- Ln C1

z

C.,4

go0



32

Since our objective is to minimize the total running time of ai

program, on a given processor, the only tine factor taken into

consideration is in Table VII, which gives the total running time on

each processor. Also, in a distributed computing system, there is no

parallelism of module execution within a program. Therefore, Table

VII gives the total running time of the modules on their assigned

processors. The problem was set having undirected arcs.

By solving the maximum flow problem on the network one gets the

minimum weight cutset which determines the module assignment. This

indicates that an optional assignment can be found by running a

maximum flow algorithm on the network. The cutset will be defined

later.

At this point, the dummy processor S4 with infinity flow going

into two of the processors is added. This means that when processor

Sis active the infinity flow from S4 will go to processor S2 and

processor S3. Infinity flow indicates that the module cannot be

assigned to that particular processor. This was done to each

processor in the problem (See network in Figs. 3.9, 3.10, 3.11).

The flow was minimized via the constraints related with the

modules and its intermodule references represented by the branches.

When S, was selected to be the active processor and the dummy

processor S4 was connected to S2 and S3 respectively, the cut-set wias

17. This includes the branches BA, ESI, DA, CA and DS1. (See Fig.

3.9 and computer print-out in Appendix tv-A).



33

*0

C1

0n

TA

"0

LC.)

C1I4

(U

/Q

/ C)



34

'4-4

818

C4 a

En C1 r

nj ci

CL

UlU

00 U

C14
WU

4.C



35

IL
C14 c

CN
u4-4

C4-4

cli

w

440



A1

36

The same was done to the other processors. This time S9, was

active and dummy processor S4 was connected to S1 and S3 respectively.

The cut-set in this case was 27 and included branches AB, CB, DB, EB

and DS2 (See Fig. 3.10 and computer print-out in Appendix IV-3).

When S3 was active and dummy processor S4 was connected to S1 and

S2 respectively, the cut-set was 26. The branches include AC, 8C, DC,

EC, DS3 and ES3 (See Fig. 3.11 and computer print-out in Appendix

tv-C).

Now consider again the example of three-processor and five module

network shown in Fig. 3.8, with the running times f c' each processor

given in Table VII.

The linear programming model was used to determine the cut-set

when all the three processors were active. The value of the objective

function was found to be 38, which gave the following cut-set (See

Fig. 3.12).

In this cut-set the relationship between Fig. 3.9 and Fig. 3.10

is shown, where the cut-set values were 17 and 27 respectively. The

total of these two cut-sets equals 44. Subtracting the common arc

which is AB with a processing time of 6 yields 38, the present cut-set

value. Similarly from Fig 3.9 the cut-set value of 7 minus the arc AB

of 6 gives a value of 11, which when combined with Fig. 3.10 whose

cut-set value of 27 gives the present cut-set value of 38.

Considering the above factors and the distribution of modules to

processors in Fig. 3.12 the following assignment is the solution,



37

C-,

~0 -0

C14

cn-



38

Module A to Processor S

Module B to Processor S

Module C to Processor S3

Module D to Processor S3

Module E to Processor S3

The linear programming model constructed was Lsed with the

LINDO[91 software package to get the above assignment solution (See

Appendix IV).

4.0 SCHEDULING ALGORITHM

4.1 Multiprocessor Scheduling Algorithm

Assumptions:

The following are the assumptions in connection with the

developemnt of the model.

I. The algorithm assumes that each module sends its received message

forward, along a chosen link to the processor. This means that

when a module has to be processed it does to the processor along a

link for best execution time.

2. The processors in the network are homogeneous and they are fully

connected. This means that all the modules in the network are

fully connected to the processors. Except for any attached

modules which must be processed by a particular processor, in

general the modules could go to any processor for processing.



3. The message eventually arrive at their final destination, taking

into consideration the fastest computation time on any given

processor. This means that, when a module has to be processed, it

should be processed by the processor which requires the minimum

amount of time.

4. The module-to-processor communication time is known and given.

5. The number of modules in a network is, in general, much higher

than the number of processors.

It is noted in this connection that the efficiency goes down by

increasing the number of processors, and hence only three processors,

an 80% efficiency level has been used. This observation was based on

research done at Digital on 2 DEC Systems, verifying that when

additional processors are included after the third procesor to the

system, the efficiency of the system goes down [2].

The general procedure for the proposed heuristic in now defined.

STEP I.

Establish the computational time constant. This constraint

assumes that a module will be assigned, only to the processor

which takes the least amount of time for processing, if it is

not an attached nodule.

STEP 2.

Establish the load balancing constraint. In our case we

assume that a particular processor at any given time should



40

not process more than 10 Million instructions/sec and

less than 0.5 Million instruction/sec, that is 0.5 !1illion <

Information/sec<10 Million. In the first case it would be

considered to be overloaded and in the latter

case it would be considered to be underloaded.

STEP 3.

Establish the priority constraint. In some cases in a

network, some modules may have to be assigned to one particular

processor in order to be processed, taking into consideration

their unique capabilities. In this respect we could first assign

those modules to the particular processor and then start from

Step 4.

STEP 4.

Set up the precedence relationships among the module to be

processed. This will identify which module should be processed

first for a given program or operation.

STEP 5.

For each program or operation, create a set of I number of

modules through which that program has to pass, to be

processed. Set up the precedence relationship(s) for each

program or operation using the relationship(s) established

in Step 4.



41

STEP 6.

In relation to the overall performance of the procedure

discussed for this problem, one should consider the

utilization rate of the functions. This means finding out

which modules in the network occurs most. Then the modules

are to be set accordingly, to carry out those particular

functions. Also, it is required to utilize as many

modules as possible to handle the most frequent functions.

STEP 7.

It is assumed that all the available processors have the

capability to process each of the above modules which occur

frequently can be assigned to any available processor for the

fastest computation time.

STEP 8.

Assign the set of the I modules formed in Step 5 to processors

so that those modules could be processed fastest. Take

computation time on a given processor into consideration.

STEP 9.

Make the above assignment to separate processors so that the

load balancing is maximized, without violating the

precedence relationships.

S'IEP 10.

Choose the mth assignment (corresponding to I - ai) from

Step 8, and if this assignment satisfies the load balancing

constraint and the computation time constraint along

with the attached module constraint (if any), then stop;

otherwise go to Step 11.



42

STEP 11.

Identify the overloaded and underloaded processors.

STEP 12.

Assign some modules from overloaded processors to underloaded

processors taking Steps 1, 2, and 3 into consideration.

Then go to Step 10.

The algorithm presented here provides a scheduling scheme for the

assignment of different modules to available processors, to minimize the

total time on a given processor, on a distributed system.

5.0 SU19 ARY

The problem of finding an assignment of modules to processors to

minimize the total processing time, where the module-to -processor

communication time is given, has been considered. The algorithm presented

in this report provides a scheme for assignment of modules to processor in

a distributed computer system.

The model represents modules as nodes in a graph and the module-

to-processor communication times as weights on the undirected arcs

connecting modules to processors. The methodology is to assign modules to

processors so that total processing time is minimized. The standard

max-flow- min-cut algorithm [81 can obtain the required assignment.

However, the computation becomes intractable for a large number of

processors.



1 43

The proposed linear programming model minimizes total processing time

subject to resource limitation constraints described in Section 4.0.

Moreover, a procedure has been shown for handling additional modules

introduced to the network, taking the utilization rate into consideration.

The utilization rate of each function which is nothing but a function of

each module, can be found simply by executing a test run before the initial

setting up of the computer systems. This could also be updated

periodically.

The heuristic models provide appropriate solutions to the module

assignment problem. The basic idea of heuristic methods is to find an

assignment for the modules to processors and to balance the load among the

processors. Load balancing is an important problem in distributed computer

systems, a problem which is yet far from being solved completely. Also,

the question remains how the relationship will be expressed between the

precedence relations and the queuing delay. These are definitely important

problems requiring further research.



44

6.0 REFERENCES

1. V. Balanchandsan, J. W. McCredie and 0. I. Miklait, "Models

of the Job Allocation Problem in Computer Networks", Proc.

Compcon, Fall 1973, pp. 211-214.

2. Digital Introduction to DEC-net, Massachusetts, January 1980.

3. Edward K. Bowdon, Sr., "Priority Assignment in a Network of

Computers", IEEE Transactions on Computers, Vol. C-18, No. 11,

November 1969.

4. V. B. Gylys and J. A. Edwards, "Optimal Partitioning of

Workload for Distributed Systems", Tutorial of IEEE Catalog, No.

EHO151-1, 1979.

5. Harold S. Stone, "Multiprocessor Scheduling With the Air of

Network Flow Algorithms", Tutorial of IEEE Catalog, No. EHO151-1,

1979.

6. Honey E. Elovitz and Constance L.Heitmeyer, "What Is A Computer

Network", IEEE 1974 NTC Record, pp. 1007-1014, 1974.

7. Kemal Efe, "Heuristic Models of Task Assignment Scheduling in

Distributed Systems", IEEE Computer, Vol. June 1982, pp. 50-56.

8. Mokhtam S. Bazarra and John J. Jarvis, "Linear Programming and

Network Flows", John Wiley, New York, 1977.

- .- - -- - -- -- ------- -- --



I
45

9. Schrage Linus, "Users Manual for LINDO", University of Chicago,

Chicago, Illinois , December 1981.

10. Wesley W. Chu, Leslie J. Holloway, Min-Isung Lan, and Kemal Efe,

"Task Allocation in Distributed Data Processing", Computer Vol.

13, No. 11, November 7, 1980, pp. 57-69.

11. Edirsinghe, Janaka, A Heuristic Approach For Module Scheduling In

A Distributed Computer System, M. S. Thesis, North Carolina A& T

State University, October 1982.

12. Pulat, S. and Janaka Edirisinghe, "Network Flow Approach to

Multiprocessor Scheduling", Presented at the 1982 Joint National

Manufacturing of ORSA/TIMS at San Diego.

13. Frederick, M. and Harold Martin, "Reliability Method For Maximum

Efficiency in a System of Interconnected Processors", To be

presented at the 15th Southeastern Symposium on System Theory,

March 1983.



46

APPENDICES



147

APPENDIX I

SOLUTION OF THE ASSIGNMENT PROBLEM

i



• R LINDO 48

LI Dt)0  (UC4APR79)

F I .. g NAM4E=
•G*. I I I
*LOOi

R O.
: *ALL
MIN 3 XA1 + 10 X31 + 12 XCI -1 10 D I + 4 'I 12 XA2 + ',32

+ 14 XC2 + 7 XD2 + 7 XE2 + 15 ,A3 12 XB + 4 ::C3 3 ':D2 - 3 7Z3
+ ',, A31 + WA32 + WA33 + YABI 41 YAB2 - YAB3 - 1 5 *:AC1
+ 1.5 WAC2 + 1.5 WAC3 + 1.5 YACI + 1.5 YAC2 + 1.5 YAC3 + 1.5 %AD1
+ 1.5 WAD2 + 1.5 WAD3 + 1.5 YADI + 1.5 YAD2 4 1.5 YAD3 - 1.5 W C
+ 1.5 WBC2 + 1.5 WBC3 + 1.5 Y3C1 - 1.5 YBC2 1.5 YBC3 + WSDI
+ WBD2 + WBD3 + YBDI Y3D2 + Y3D3 .5 :BEI 0.5 'I E+ 0.5 WBE3 + 0.5 YBEI 4 0.5 Y3E2 4 0.5 Y3E3 WCDI + UCD2 + '.CD3
+ YCD[ + YCD2 + YCD3 + 3. 5 WCEI + 3. 5 WCE2 E+ 3.5 WCE3 + 3.5 "C.-
+ 3.5 YCE2 + 3.5 YCE3

SUBJECT TO

2) XAI 4 XA2 + XA3 = 1
3) XB1 4 XB2 + XB3 = 1
4) XCI + XC2 + XC3 = 1
5) XDI + XD2 + XD3 = 1
6) XEI + XE2 + XE3 = 1
7) XAI - X31 + .'ABI - YABi = 0
8) XA2 - XB2 + WAB2 - YAB2 = 0
9) XA3 - X33 + WAB3 - YAB3 = 0

10) XAI - XC1 + WACI - YACI = 0
11) XA2 - XC2 + WAC2 - YAC2 0
12) XA3 - XC3 + "WAC3 - YAC3 = 0
13) XAI - XDI + WADI - YADI = 0
14) XA2 - XD2 + WAD2 - YAD2 = 0
15) XA3 - XD3 + WAD3 - YAD3 = 0
15) XBi - XCI + WBCI - YBCi = 0
51) X32 - XC2 + WBC2 - YBC2 = 0
17) XB3 - XC3 + WBC3 - YBC3 = 0
13) X31 - XD1 + WBDI - YBDI = 0
19) XB2 - XD2 + WBD2 - YBD2 = 0
20 XB3 - XD3 + WBD3 - YBD3 = 0
21) XB - XEI + WBEI - YBE = 0
22 XB2 - 2 + !4BE Z Y2 " = 0
23 X33 - XE3 + WBE3 - Y: - = 0
24 XCI - XDI + WCDI - YCDI = 0
25) >2 - D2 + WCD2 ,CD, = 0
26 XC3 - >D3 + NCD3 - YCD3 = 0
27 :CI - -E1 + WCEI - YCZi = 0
23) ::C,2 X XE + ,C..' - YCE 2 = 0
47 XC -3 : E 4CE3 - YC 3 = 0
29 :,*:D - XZ1 + 4D :I - YD I = 0
30 .:D 2 2 - 1DE - YD:2 = 0
31 >D3 - :E3 ' IDE2 - DE 3

33~ :31 <=

35~ :31 <3I3 5



36) XEI <= 49
37) XA2 <= 
38) XB2 <= 
39) XC2 <= 1
40) XD2 <= -
41) XE2 <= 1
42) XA3 <= 
43) XB3 <= I
44) XC3 <= 1
45) XD3 <= 
46) XE3 <= 1
48) XAI + XBI + XCI + XD1 + XEI >=
49) XA2 + XB2 + XC2 + XD2 + XE2 >=
50) XA3 + XB3 + XC3 + XD3 + XE3 >=

END
NUI3ER INTEGER VARIABLES= 15

*GO

LP OPTIMUUl FOUND AT STEP 44
OBJECTIVE FUNCTION VALUE

1) 33.00000
VARIA3LE VALUE REDUCED COST
XAI 1.000000 3.000000
X31 0.000000 0.000000
XCI 0.000000 0.000000
XD1 0.000000 0.000000
XEI 0.000000 0.000000
XA2 0.000000 0.000000
X32 1.000000 4.000000
XC2 0.000000 1.•00000
XD2 0.000000 0.000000
XE2 0.000000 0-00000
XA3 0.000000 2 .0000,j
X33 0.000000 0.90000;
XC3 1.000000 0.0000 0
XD3 1.000000 0.000000
x73 1.000000 0.000000
7:A31 0.000000 2.000000
iA32 1.000000 0.000000
"A33 0.000000 0.000000
YABI 1.000000 0.000000
YA32 0.000000 2.000000
YA33 0-000030 2.000000
;,AC 1 0.0)003o0 3.000000
"AC2 0. 000000 3•000000
,:AC3 1.000000 0.000003
YACI 1.0)000 0.000000
YAC2 0.0)0')0 0 000000
Y.C 3 0.3 .O0) 3 030000

"3,'3. [' 0") 0 ) )0
";A. 33)3 0. )0) V)

,3O. ) ) . 3 . 3, )0 3'
1 3 3)' ) )3. )'U) J3)"AD 0)) 3. .3 ')

:A 3 , ,)) 3.' -3'))) ,,
.; i .'l '3 i, ,) ) 3. ,j),3 ) ).'

-3

3



I
50

0.q3C2 0.000000 3.000000
UBC 3 1.000000 0.000000
Y3C1 0.000000 0.000000
Y'BC2 1.000000 0.000000
YBC3 0.000000 3.000000
WBDI 0.000000 2.000000
UBD2 0.000000 2.000000
U3D3 1.000000 0.000000
Y3DI 0.000000 0.000000
Y3D2 1.000000 0.000000
Y3D3 0.000000 2.000000
WBEI 0.000000 0.000000
WBE2 0.000000 1.000000
WBE3 1.000000 0.000000
Y3EI 0.000000 1.000000
YBE2 1.000000 0.000000
Y3E3 0.000000 1.000000
UCD1 0.000000 1.000000
WCD2 0.000000 0.000000
WCD3 0.000000 2.000000
YCD[ 0.000000 1.000000
YCD2 0.OOCOOO 2.000000
YCD3 0.000000 0.000000
WCEI 0.0000030 0.000000
WCE2 0.000000 1.000000
WCE3 0.000000 0.0000)0
YC'E 0.000000 7.00000
YCE2 0.000000 6.000000
YCE3 0. 00000J 7.0000)]
"D I O. 000 ).010000 )
YDE1 0.000)) 0.000000
Y D 1 0 .0 ;)) 00 0 . 00 0) ,C

Y/1 0.000000 0 00000
0.D 3 O .O00000 0.0000')

YD 3 0.0,000 0 .0000Q
a " S LAC DUAL PRICES

2) '0.010000 -9. 000000
3) 0.000000 -10-000000
4) 0.000000 -4.5:)000
3 0. 00000 -5. 590000
) 0.000000 -7.0000Y0

70 O.0000 0 10
8) 0.000000 -I 1.000,'))
9) 0.0O00 -1.00000)

1) 0.02000 1)500000
11) 0. ] ] 0') 1 500) 0

12 '.,,/)'2) -. 1500))
:2 3 3 ) ; ]l 53.) )

.
i 0 . ; ' , ) - I . ? ,

;o~~~~ 0 j:] ); l ]

o j )

0 ,')') ).

0 - • • ,



51

.l 0. 000000 - J 5
22) 0.000000 0 500000
23) 0.000000 -0.500000
24) 0.000000 0.000000
25) 0.000000 -1.000000
26) 0.000000 1 .000000
27) 0.000000 -3.500000
23) 0.000000 -2.500000
29) 0.000000 0.000000
30) 0.000000 0.000030
31) 0.000000 0.000000
32) 0.000000 0.000000
33) 1.000000 0.000000
34) 1.000000 0.00000035) 1.000000 0.000000
36) 1.000000 0.000000
37) 1.000000 0.000000
38) 0.000000 0.000000
39) 1.000000 0.000000
40) 1.000000 0.000000
41) 1.000000 0.000000
42) 1.000000 0.000000
43) 1.000000 0.000000
44) 0.000000 0.000000
45) 0.000000 0.000000
46) 0.000000 0.000000
47) 0.000000 -3.3-30000
43) 0.000000 -1000000
43) 0.000000 -2.000000
50) 2.000000 0.000000
5 0.000000 1.500000
NO. ITERATIONS= 44

3RANCHES= 0 DETER:H.= 4.O00E 0
DO ,A;G;(SE'N4SITIVITy) ANALYSIS?

LP 0PTIMUM IS I? OPTI'IU:1

STOP



I 52

APPENDIX II

ASSIGNMENT OF EXTRA MODULIES TO PROCESSORS



I
53

3 XAI I I"2-  XAJ I I flA o I 10 $ 4 I I' .? n I,,
1I 4 XC-2 f- 4 XV-3' I " XTI 1 "I 7 XD"P f '013I 4 XI:' 1 7 XF::2 1 4 X,.

".Ill; I 'C TO
:2) XAl I XA2 F XA, 0

3) X 1,T.+ X I'? F. XI ... I
4) XC I F XC2 F KYS 3
4) X)C + XIC2 + . X-3 :..

6) XE 1 XI- 2 + XFT3 2

7) XA. 0
0) X1." ::B 0
9) x10 2: 0
1. 0 ) XI )10

Il) X 3 := 0
1. ) X A1. :
I.) XA ' 1
1.4) XA'1
:13) X i I
1.6 ) XB: : 1.
19) X CI 1
I::) X 1 I
I ) X C -" 1

70 ) Xl 5 ..." 1L

:" )XI)I.I ::: :1

':) XI' 1'3
!4 ) Xl I.. . 1 :

'4. X I: 1

.2 :: ) X F- 3 ::: 1
I (41

0.1" ITIl M FOUND AT 'S'TIF' t. 0

OB,JE7CT IVE- F'JNC r'ON VAI..IJIE

54.00000

IAIN: : o' ' EI VA LU R I111 f' L E='i COST

,-l. 0.000000 3.000000
. ? 0.000000 :12.000000

:<VS. 0.000000) 15.•00)0000
X F4: 1 L000000 0 000000
4 '" 0.000000 0.0 000
x,' ) .0 000000 2 0000() 00
.3 :1 :1, .00000 0.000000
I * 000000 0 .000000

4 3 0.000000 0. 000000

)(0:1. 0 .000000 3 000000
xl? I *1.000000 0 000000
<,3 0.0000 0 ) 000000
t: :1 1. 0 00 0 0 0 * 000000

1 .000000 0 0000000
<-3 0.000000 0.000000



54

f'. W SLACK DUAL.. PRTC13

2) 0.000000 0.000000
0.000000 10.000000

4 ' 0.06.)000 1.4.0OQG(A)
0 00k(tO -, .000000
0 . V 0(, A.) - 7 VJk;UVU
0.000000 0.000000

s]) 0.000000 6.000000
0.000000 10.000000

1.).00000 2 .) 000000
11) 0.000000 4.000000
11 ) .000000 0 .000000
13) 1.000000 0.000000

14) 1.0000000 0.000000

1.4) ,00O000 0.000000

16 1 .000000 0 .000000

17) 0.000000 0.000000

1. i)1.000000 0.()()00())
1 7) 0.000000 0.000000

0)1.000000 0 .00 00
.~) 1 1 • 000000 0 • 000000

0.000000 0 • 000000
1.000000 0.000000

') 0.000000 3.000000
01000000 0.o0oo0o

1.000000 0.000000

N 1). 1 FRAT.ONS:= 10

,W) RANGE(SENSI. 'I VITY) ANALYSIS'?
: 4



55

APPENDIX III

NETWORK FLOW APPROACH TO TWO PROCESSOR SCHEDULING

EXAMPLE PROBLEM



I
56

MAX I1-

SuIt ,i)CT "TO
2) F FSIA FS I D FS 1 C FS L- I"-'E 17S 11:F 0
3) FSLA -f F A F'FCA I-)--. F'p. FAF "- FAC -- FAS? 04) FS 1D FEIA +f FA 'F FEB + F:' ID FBS2 FPE - F . 05) FSIC FCA + FAC + FEC FCS2-- FCE -"
6) FSl. FDIB .- FBDI + FED. FDS2- FDE 07) FSIE FEB + FEE FEC" FCE-- FED r Iir - FE.;2 08) FSIF FFA + FAF - FFS2 = 0
9) F + FAS2 + FBS2 4. FCS2 + FEIS2 . FFS2 + FFS2 0
10) FSIA 10
:11) FSIB: 10
12) FSC. 4
13) F SL i 3
14) FSlI E 12
:15) FSLF 4
:16) FAB 9
1.7) FBA 9
:1 8) FAC 4
19) FCA : 4
20 ) FAF 12
2:.) FFA 12
22) FB-: 12
'23) FDIB 12
24) F BIE 3
"') FEB " 3
26) FCI 1.1
27) FEC : 1
28) FDE 5
29) FEI 5
30) FAS2 "
31) FBS2" 2
32) FCS2 4
33) I--DS2 . 6
34) FES2 5
315) :FS2. 18

ENDI

: 130

I:' (OI:TIM JM FOUND AT S.TEF 17

oBJi--CTrIVE I.UNCT[ ON VALUE

f) 38.00000

I



57

VARIABLE VALUE REDUCED COSTF: 38.000000 0.000000
F'S 1A 10.000000 0.000000

B 9.000000 0.000000FSIC 4.000000 0.000000
FS l 3.000000 0.000000
FS1E 8.000000 0.000000
FSIF 4.000000 0.000000
FBA' 7.000000 0.000000
FFA 0.000000 1.000000
FCA 0.000000 0.000000
FAB 0.000000 0.0C000

-12; iUVUU vFAC 0.000000 0.000000
FAS2 5.000000 0.000000
FB 0.000000 0.000000F".1113 0-000000 0.000000F'S2 2.000000 0.000000
FBIE 0.000000 0.000000
F B !0.000000 0.000000
F7E-C 0.000000 0. 000000
FCS2 4.000000 0.000000
F C 0.000000 0,000000
FED 3.000000 0.000000
FI'S2 6.000000 0.000000
FDE 0.000000 0.000000
FES2 5.000000 0.000000
FFS2 16.000000 0.000000

ROW SLACK 'JAl... PRI[ CES
2) 0.000000 1.0000003) 0.000000 1.0000004) 0.000000 1.0000004) 0.000000 1.000000
6) 0.000000 1.000000
7) 0.000000 1.000000
8) 0-000000 0.000000
9) 0.000000 0.000000

10) 0.000000 0.000000
11) 1.000000 0.000000
12) 0.000000 0,000000
13) 0.000000 0.000000
14) 4.000000 0.000000
14) 0.000000 1.000000
1 4) 9000000 0.000000
I6) 2.000000 0.000000
113) 4.000000 0.000000
1.9) 4.000000 0.000000

20 0.000000 1.000000
20 12.000000 0.000000
2) 12.000000 0.000000

23) 12.000000 0.000000

I



II
~58

24) 3.000000 0.000000
25) 3.000000 0.000000
26) 11.000000 0.000000
27) 11.000000 0.000000
28) 5.000000 0.000000
"9) 2.000000 0.000000
30) 0o000000 1.000000
31) 0.000000 1,000000
32) 0,000000 1.000000
33) 0°000000 1,000000
34) 0.000000 1.000000
35) 2°000000 0.000000

NO. ITERATIONS= 17

DO RANGE(SENSITIVITY) ANALYSIS?
::".N

: (t) IT

I 2



I

60

APPENDIX IV-A

'JAN'; PROCESSOR SI IS ACTIVE AND THE DUMMY PROCESSOR

S4 IS CONNECTED TO PROCESSOR S2 & S3

I



59

APPENDIX IV

NETWORK FLOW APPROACH TO THREE PROCESSOR PROBLEM



I
60

APPENDIX IV-A

'JAN'; PROCESSOR S1 IS ACTIVE AND THE DUMMY PROCESSOR

S4 IS CONNECTED TO PROCESSOR S2 & S3



I
61I

• R L I NIOS
L I N ) (!:C13AUG79)

FILE : A.!=
* JA".
*LOOK

RO ,

> *AL:,
MIAX F

SUBJECT TO
2) FASI + FAB - FAC FAD- F3A - FCA - FDA= 03) - FA3 + FBA 4 F3C + F3D + FBE +FBS2 - FCB - FDB - FE3

- F523 - 0
4) - FAC + FCA - FBC + FCB + FCD + FCE + FCS3 - FDC - FEC

- FS3C 0
5) - FAD + FDA - FCD + FOC + FDSI + FDS2 FDS3 - FS2D - FS3

- 0
6) - FBE + FE3 - FCE + FEC + FESI + FES3 - FS3E 07) Z - FASI - FDSI - FESI = 08) - F3S2 + FS2B - FDS2 + FS2D - FS4S2 09) - FCS3 + FS3C - FDS3 + FS3D - FES3 + FS3E - FS4S3 0

10) - F + FS4S2 + FS4S3 = 011) FAS1 < 1 1000
12) FESI <= 3
13) FDSI <- 1
14) FS4S2 <= 1000
13) FS4S3 < 1 1000
16) FAB <= 6
17) F3A <= 6
13) FAD <= 4
19) FDA <= 4
20) FAC <= 3
21) FCA < 3
22) FDS2 <. 4
23) FS2D <= 4
24) FDB <= 7
25) FBD <= 7
26) FDC <- 527) FCD <=

28) FDS3 <= 6
29) FS3D <. 6
30) FCs <- 2
31) FBC <- 2
32) FCS3 <m 1000
33) FS3C <= 1000
34) FCE <= 6
35 FEC <= 6
56 F3E <= 3
27 FZ3 <= 3
33) FE S3 < 4
39) FS3E < 4
40) FS2 < 1 1000
41) F523 <. 1000

END
*Go

S _ _



62

LP OPTI1U'! FOUND AT STEP 17

OBJECTIVE FUNCTION VALUE

1) 17.00000
VARIA3LE VALUE REDUCED COST

F 17.000000 0.000000

FAS1 13.000000 0.000000

FA3 0.000000 1.000000

FAC 0.000000 1.000000

FAD 0.000000 1.000000

F3A 6.000000 0.000000
FCA 3.000000 0.000000

FDA 4.000000 0.000000

F3C 2.000000 0.000000
FBD 0.000000 0.000000

FBE 0.000000 0.000000

F3S2 0.000000 0.000000
FC3 0.000000 0.000000

FDB 0.000000 0.000000

FEB 0.000000 0.000000
FS23 3.000000 0.000000

FCD 0.000000 0.000000

FCE 0.000000 0.000000

FCS3 0.000000 0.000000

FDC 0.000000 0.000000

rEC 0.000000 0.000000

FS3C 1.000000 0.000000
7Dsi 1.000000 0.000000
DSo 0.000000 0.000000

FDS3 0.000000 0.000000
-72D 4.000000 0.000000

:53) 1.000000 0.000000

-ES1 3.000000 0.000000

ZES3 0.000000 0.000000
FS37 3.000000 0.000000

FS4S2 12.000000 0.000000

FS4S3 5.000000 0.000000

Rol: SLACK DUAL PRICES

2) 0.000000 1.000000

3) 0.000000 0.000000

4) 0.000000 0.000000

5) 0.000000 0.000000
o) 0.000000 0.000000

7) 0.000000 1.000000
3) 0.000000 0.000000

0.000000 0 .000000
0.000000 0.000)00

' S0.,3000),0 0.000000
-, - 0 o o000)) 1 0 0 0 f)

' .0)))) 00 )
3 3: . ])00),)O 0. :)0{]],Y

) )05. )00(')) 0 21)0)
-- * , 2.))!)0:)) 0. )2)003

* 1 * 3 0,00 )) * . ) ),1



63

20 03. 00 '))0 f 0. 0 0 )
21) 0. 000000 1.000000
22) 4. 000000 0. 000000
2 3) 7.000000 0 000000
!54) 7 000000U' 0 O0J' 0'JO

7 .000000 0 .000000
2) 5 000000 0.000000
25) 5.000000 0.03000

53 50 0 000 0 0.00000
29) 3.0000100 0 000000
30) 2. 00000) 0 .000000
31) 0.00000 0.000000
32) 1000.000000 0.000000
33) 999.000000 0.000000
34) 5.000000 0.000000
35) 6.000000 0.000000
36) 3.000000 0.000000
37) 3.000000 0.00000:'
33) 4.000000 0.000000
39) 1.00000 0.000000
40) 1000.000000 0.000000
41) 992.000000 0.000000
:40. :TERATIONS= 17
DO RANGE(SEN S I '.ITY) A.:A YS:S?

:*!,U T

STOP

ii

I



I'
64

I

APPENDIX IV-B

"JANA'; PROCESSOR S2 IS ACTIVE AND THE DUMMY PROCESSOR

S4 IS CONNECTED TO PROCESSOR S1 & S3

I _ _ _



65

I
LINDO (UC3AU579)

F I* A:IT E
FILE XA1IE=
*JAN A
*LOOKZ

RO

:IA.

SUBJECr TO
2) FASI + FA3 + FAC -- FAD - FSIA - FBA - FCA - FA
3) - FAB FA FBS + F3C + FBD + FtE - FCE - FDB -

- 0
4) - FAC + F CA - FB C - FC3 + FCD + FCZ + FCS3 - FDC - FEC

- 3C = 0
5 - FAD + FDA - FBD + FDB - FCD + FDC + FDS2 +FDS3 - F1)

- FS3D - FSlO = 0
6) - FBE + FEB - FCE + FEC FESI - FES3 - FS 1 - FS3=
7) - FASI + FSIA - FDSI + FSID - FES I FSIE - FS4S =
8) F - FDS2 - FDS2 0
9) - FCS3 + FS3C - FDS3 ± F53D - FES3 -FS3E - FS3 =-

10) - F + FS4SI + FS4S3 0
11 FAS i <= 25
12) FSIA <= 25
13) FAD <= 4
14) FDA <= 4
15) FAB <= 6
16) FBA <= 6
1 7) FAC <= 3
10) FC A <= 3
19) FBC <= 2
20) FC3 <= 2
2 ) FBD <= 7
22) FD <= 7
23) FBE <= a
24 FEB <- 8
25 FCD <= 5
26) FDC <= 5
27) FCE <= 6
28) FEC <- 6
29) 7CS3 = 25
30) FS3C <= 25
31 FDSI <= I
32 F SI <= 1
33) FDS3 <= 6
34) FS3D <= 6
35 7ES4 <= 4
35 FS3E <= 1.
3 FESI <- 3
3,)* --I < 3
3 F3S2 < 25
40) FDS2 <= 4

1) FS4SI <- 1000
2) F54S3 <- 1000

4 ) ?EFES<=

t ';



66

E :D

L? OPnl>-IU' FOUND A. STEP 20
OBJECTIVE FUNCTIO' VALUE

-) 27.00000
VARI3ALE VALUE REDUCED COST
F 27.000000 0. 00000

0.000000 0 •JU000000
A . o. 000000 0. 000000

SAC 3.000000 0.000030
- 4.000000 0.000000

13.000000 0.000000
FSA 0.000030 1 .000000
FCA 0.000000 0.000000
F.A 0.000000 0.000000
FBS2 23.000000 0.000000

1 0.000000 1.000000
F3D 0.000000 1.000000
F3E 0.000000 1.000000
FCZ 2.000000 0.000000
FDB 7.000000 0.000000
FE 8.000030 0.000000
FCD 0.000000 0.000000
FC1 1.000000 0.000000
FCS3 0.000000 0.000000
FDC 0.000000 0.000000
FEC 0.000000 0.000000
FS3C 0.000000 0.000000
FDS2 4.000000 0.000000
F.) S 0.000000 0.000000
FD " 0.000000 0.000000
FS32 6.000000 0.000000
FS'D 1.000000 0.000000
FES !0.000000 0.000000
FES3 0.000000 0.000000
FS!-- 3.000000 0.000000
S32 4.000000 0.000000

S 17.000000 0.000000
FS4S 3 10.000000 0.000000
FES4 0.000000 0.000000

RO4 SLACK DUAL PRICES
2) 0.000000 0.000000
3 0.000000 1.000000
4) 0.000000 0.000000
5 0.000000 0.000000
6) 0.000000 0.000001

S0. 000000 0.)00000
0.00000 1. 0000001
3.000000 0 • 000000130.000000 0.00000;]

ii, 25. 00o000 0.000000
1 2 12. ooooo 0.000000
13) 0 o f) O)o 00 0 .') ()) 00
14 4 .0I0000 0 • 0000
15) 0 .,) 00000 1 .000000

I



67

I'~~ 6.00 0. 0 0'.)o
17) 0 0099 I0 000
1) 3. 00 00 0 0 OOaO1o1 9 2.- iO ) 0 0.T 0 00 f)

22 .00 1. 1" i0000
2 ) 7000 ) 0 9 .OoO o

22 . 00 0 0 0 1)00 00%
'4 O' .3. o 00 00 000[)

250)0009);)0 1 .0 )0
-. 5.00(0DO00), 0. 090 0 r) 1

2 !5.-C0) 0 0 - 0000002,) 6.000030 0.090000
29S) 25. 0 00)0 0 0 .000.000
309) 25.0,0000 0 .0000009
30) 5.000000 0.000000
31)) 1) 0 0 0o 0.000010
332) 0 ') 0 0 0 0 .OQ) 0ooo33) 0.0000009 0.0000011
35) 0.000033 0.00000f)
3) 64.-0000 0) 0.000001
3736)' ) ) *.0 0 0.0000009
33) 0.0000 0.-0000
39,1 2.0 00 ) 1 0.000900o

4)983.000900J 0.00000C42) 990.000000 0.000000
34.000o90 0 M.090.900o

N~o. L:RTo:=20
DO9 ?,AS (S E!S IT VITY ) A.NAL S IS,

>* :

S, 0 )



68

APPENDIX IV-C

'JANAK'; PROCESSOR S3 IS ACTIVE AND THE DUMMY PROCESSOR

S4 IS CONNECTED TO PROCESSOR SI & S2

4 1

iI



II

69

LINDO (UAUG79)
*RETR

FILE NXE=
*JA A\K

> *ALL

:,X F
SUBJECT TO

2) FAB + FAC FAD F- FASI - FBA - FCA - FDA - FSIA = 0
3) - FAB + FBA FBC + F3D + FBE "+" FBS2 - FCB - FDB - FEB

- FSZ3= 0
4) - FAC + FCA - FBC - FCB- FCD + FCE + FCS3 - FDC - FEC

= 0
5) - FAD + rDA - FBD + ZD3 - FCD -- FDC + FDSI + FDS2 + FDS3

- FSID- FS2D= o
6) - 7BE + FEB- 7CE- FEC + FESI + FES3 - FS31= 0
7) - FASI + FS1A - FDSI + FSID - FESI + FSIE - FS4SI =
8) - FBS2 - FDS2 - 7SZ - FS2 S - FS4S2 = 0
9) F - 7CS3 - FDS3 - F2S3= 0
10) - F + FS4S1 + FS432 = 0
11) FASI <= 25
i-I ' FS1A <= 25
13) FAS <= 6
14) FBA <= 6
5) FAC <= 3

16) FCA <= 3

17) FAD <= 4
13) FDA <= 4
19) FBC <= 2
20) FB <= 2
21) FBD <= 7
22) FDB <= 7
23) FBE <= 8
24) FEB <= 8
25) FBS2 <= 25
26) FS2B <= 25
27) FCD <= 5
28) FDC <- 5
29) FCE <= 6
30) FEC <= 6
31) FDSI <= 1
32) FSID <= 1
33) FDS2 <- 4
34) FS2D <-
35) LESI <- 3
36) 7SI <= 3
37) FCS3 <- 25
38) FDS3 <= 6
39) FES3 <= 4

OP1



70

40) FS4S2 <= 1000
41) FS4S1 <= 1000

E:;D

:*Go

LP OPTI::! FOU:D AT STEP 13

OBJECTIVE FU.'CTION' VALUE

1) 26.00000

VARIABL7 VALUE REDUCED COST

26.000000 0.000000

FAB 0.000000 0.000000

FAC 3.000000 0.000000

FAD 4.000000 0.000000

FASI 0.000000 0.000000

FBA 0.000000 0.000000

FCA 0.000000 1.000000

FDA 0.000000 0.000000

FSIA 7.000000 0.000000

FBC 2.000000 0.000000

FBD 2.000000 0.000000

F37 7.000000 0.000000

FBS2 0.000000 0.000000

FCB 0.000000 1.000000

FDB 0.000000 0.000000

FEB 0.000000 0.000000

FCD 0.000000 I.OCOOO

FCE 0.000000 1.000000

FCS3 16.000000 0.000000

FDC 5.000000 0.000000

FEC 6.000000 0.000000

FDSI 0.000000 0.000000

FDS2 0.000000 0.000000
FDS3 6.000000 0.000000

FSlD 1.000000 0.000000

FS2D 4.000000 0.000000

FESI 0.000000 0.000000

FES3 4.000000 0.000000

FS1E 3.000000 0.000000

FS4S! 11.000000 0.000000

FS213 11.000000 0.000000

FS4S2 15.000000 0.000000

ROW SLCI DUAL PRICES

2) O.U00000 0.000000

3) 0.400000 0.00000

4) 0. 000000 1.00 0000

5) 0.000000 0. 000000
1).;'0000o 0.0000100
0. 000000 0. 000000



71

8) 0.000000 0.000000
9) 0.000000 1.000000

10) 0.000000 0.000000
ii) 25.000000 0.00000012) 8000000 0.00000013) 6.000000 0.000000
13) 6.000000 0.000000
14) 0.000000 0.000000
13) 0.000000 1.000000
16) 3.000000 0.000000

0.000000 0.000000
19) 4.000000 0.000000
29) 0.000000 i.000000
2-) 2.000000 0.000000
21) 5.000000 0.00000022) 7.000000 0.000000
23) 1..000090 0.0000002") 25.000000 0.000000
2;) 25.000000 0.000000
2) 14.000000 0.000000
Z5.000000 0.000000
20) 0.000000 1.000000

6.000000 0.00000030) 0.000000 1.000000
-0.00000 0.000000
0.000000 0.000000
-.000000 0.0000003.. 0.000000 0.000000
333 3.000000 0.00000037) 0.000000 0.000000

37) 9.000000 0.000000
3s) 0.000000 1.000000
3a) 0.000000 1.000000
40) 985.000000 0.000000
41) 989.000000 0.000000

NO. ITERATION;S= 1

DO RLAGE(SE:SITIVITY) ANALYSIS?
>*N0

"a

I I II I I I I I I | I I I



D~AT

FILMED


